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We propose a method to quantitatively estimate the error made with a finite basis expansion in time-
dependent calculations. This method is applied to the hydrogen atom in intense laser fields and used to
compare different basis sets with each other. We also show how to construct a Gaussian basis set suitable for
the description of ionization dynamics in intense laser fields.
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I. INTRODUCTION

The experimental and theoretical investigation of the in-
teraction mechanisms of atoms, molecules and clusters with
intense laser fields represents one of the most challenging
problems of the present research. In strong dependence on
the laser parameters, very different phenomena can be ob-
served, e.g., high harmonic generation �1–3�, above thresh-
old ionization �4–6�, or stabilization against ionization �6–9�
in atoms. In molecules, due to the additional nuclear degrees
of freedom �DOF�, further mechanisms do occur, such as
molecular stabilization against dissociation �10–12�, bond
softening �13–17�, above threshold dissociation �17–19�, or
charge resonance enhanced ionization �17,20–22�, to name
but a few effects.

The theoretical understanding of these mechanisms re-
quires, in principle, the solution of the time-dependent
Schrödinger equation �TDSE� for all electrons and all
nuclear DOF. However, only for the smallest systems, laser
aligned H2

+ �23�, atomic hydrogen �24,25� and atomic helium
�26,27� numerical solutions of the TDSE exist. In all other
systems approximations are necessary, with promising ap-
proaches being, e.g., time-dependent Hartree-Fock �TDHF�
or time-dependent density functional theory �TDDFT� in ba-
sis expansion �see, e.g., Ref. �28��. The different approaches
have one common problem, namely the choice of a “good”
basis set.

In this paper we focus on this problem. The standard
method is to increase the basis size until the results can be
called converged �see, e.g., Ref. �25��. However, this is not a
satisfactory solution as one does in general not know what
kind of basis functions must be added and when the solution
is converged.

Shortly after the development of quantum mechanics the
situation was even worse. At that time only very small basis
sets could be used and the aim was to find an approximation
for the lower bound of the calculated ground-state energy
�Refs. �29–32�, and references therein�. These studies were
continued and extended two decades later �Refs. �33–39�,
and references therein� even with the aim to derive error
bounds for general expectation values �Refs. �40,41�, and
references therein�. The method of Bazley and Fox �40,42� is

nowadays standard in quantum chemistry �see, e.g., Ref.
�43�, p. 94�.

The evaluation of the error made with a finite basis ex-
pansion in time-dependent scattering calculations was dis-
cussed also �Refs. �44–48�, and references therein� and used,
e.g., to calculate errors of transition amplitudes for the
charge transfer in H+H+ collisions �49,50�. Further works
used this as a basis to develop a formalism for obtaining
optimal translation factors �see, e.g., Refs. �51,52��.

One of the most sophisticated formalisms is the so-called
basis generator method �BGM� �53� which is numerically
very demanding. The time-dependent basis functions are
generated by multiplying the functions of the initial basis
with powers of all occurring potentials. Therefore, all matrix
elements have to be calculated numerically. Up to now, it has
mainly been applied to ion-atom collisions excluding dy-
namical electron-electron interactions �54–57�.

The aim of this paper is to present a formalism to obtain a
quantitative measure for the accuracy of a basis expansion in
time-dependent calculations and to test different possible ba-
sis expansions for the description of ionization dynamics
with this measure. The basic quantity � is introduced and its
properties are discussed in Sec. II. An estimate that allows
one to quantitavely compare the results of time-dependent
calculations using different basis sets is introduced in Sec.
III. The calculation of the occurring matrix elements is
sketched in Sec. IV for atomic hydrogen. The hydrogen atom
is the optimal test system since the choice of the basis set is
the only approximation that has to be made. Furthermore,
reference calculations �24,25� exist. In Sec. V the results are
shown and discussed also in comparison to the calculations
of Hansen et al. �25�.

II. THE BASIC QUANTITY �

In this section we introduce the basis quantity � which
has been used to obtain estimates for the accuracy of time-
independent as well as time-dependent calculations.

A. Time-dependent Schrödinger equation

We are interested in the modeling of processes such as the
interaction of atoms or atomic many-body systems with ions
or intense laser fields. In the nonrelativistic regime these pro-
cesses can be described with the TDSE or with many elec-*Electronic address: Mathias.Uhlmann@gmx.de
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tron approximations such as TDDFT. A standard way for
solving these equations is the usage of a finite basis set. In
the following we define the basic quantity to evaluate the
error of a basis expansion when the Schrödinger equation is
solved. The extension to TDDFT �28�, applicable for the
description of many electron systems, is straightforward and
only mentioned briefly.

We start with the TDSE

i
�

�t
��� = Ĥ��� �1�

which has to be solved. The Hamiltonian

Ĥ = −
�2

2
+ V �2�

consists of the kinetic energy and an external potential V
�atomic units are used throughout this paper�. A finite basis
expansion serves to find an approximate solution

���� = �
�=1

Nb

a����� �3�

to the exact solution ���. Nb is the number of used basis
functions. In general, the time-independent basis functions

���� are not eigenfunctions to Ĥ. The basis is assumed to be
orthonormal, i.e., ��� ����=���. This assumption does not
restrict the general applicability since every basis set can be
diagonalized. Putting the basis expansion �3� into the TDSE
�1� results in

i
d

dt ��=1

Nb

a����� = Ĥ�
�=1

Nb

a����� . �4�

By multiplying Eq. �4� with ���� we find

i
d

dt
a� = �

�=1

Nb

H��a�, �5�

where H�� is the Hamilton matrix

H�� = ����Ĥ���� . �6�

Equation �5� is the TDSE in basis expansion. Now a condi-
tion for the case that the solution of Eq. �5� is also a solution
of Eq. �1� is derived. Equation �5� is multiplied with ���� and
one obtains

i
d

dt ��=1

Nb

a����� = �
��

Nb

����H��a�. �7�

Equation �7� is satisfied by solutions of Eq. �5�. With Eqs. �3�
and �6� and

P̂ = �
�=1

Nb

�������� �8�

this can be written as

i
�

�t
���� = P̂Ĥ���� . �9�

Equation �9�, which is satisfied by the same solutions as Eq.
�5� �and in this sense identical to Eq. �5��, expresses the
approximation of Eqs. �5�–�9� in an instructive way. The use
of a finite basis set is identical to restricting the Hamiltonian

Ĥ to the part of the Hilbert space spanned by the finite basis

set, i.e., to using the projected Hamiltonian P̂Ĥ instead of Ĥ.
Therefore, solutions of Eq. �5� represent solutions of Eq. �1�
if

Ĥ���� = P̂Ĥ���� . �10�

This is satisfied, e.g., for the case of a complete basis set,

P̂=1. However, Eq. �10� can also be satisfied if incomplete
basis sets are used �e.g., a basis that contains only eigenfunc-

tions to Ĥ�. In general, Eq. �10� is not satisfied and solutions
of Eq. �5� do not represent solutions of Eq. �1�. Using

P̂����= ���� and the abbreviation

X̂ = P̂ĤP̂ − Ĥ , �11�

Eq. �10� is equivalent to X̂����=0. Therefore, we define the
measure �

��t� = �X̂�t�����t���2

= ����t��X̂2�t�����t��

= ����t��Ĥ2 − ĤP̂Ĥ����t�� . �12�

The quantity � has been used in time-independent calcula-
tions for a long time to obtain lower bounds for obtained
expectation values �Refs. �29–33,35–39�, and references
therein�. � integrated over time, i.e., 	−�

� ��t�dt, has been
used in time-dependent scattering calculations to compute
errors of transition amplitudes �Refs. �44–46,50�, and refer-
ences therein� or to obtain optimal translations factors �see,
e.g., Refs. �51,52��.

The use of ��t� as a direct measure of the quality of
time-dependent calculations is discussed in Sec. V. There, it
is also shown that in general it is not possible to use �
integrated over time �used, e.g., in Refs. �45,46,50–52�� to
estimate the error made with a finite basis expansion.

The properties of � are addressed in the remainder of this
section. An estimate for the time-dependent case is proposed
in Sec. III. Please note, that parts of the discussion, in par-
ticular in the time-independent case, were already given else-
where �Refs. �29–39,45–48�, and references therein� and are
included for completeness, here too.

In Ref. �28� the operator X̂ has been given for the case of
implicitly time-dependent basis functions and TDDFT. For
this case the measure � can be defined with Eq. �12� using

the operator X̂ from Ref. �28�.
A solution of the TDSE in basis expansion �5� solves the

exact TDSE �1� if and only if ��t�=0 for all times t. This
statement has to be proved. To do this, we start with Eq. �9�
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i
d

dt
���� = Ĥ����� �13�

which is equivalent to Eq. �5�. Since Ĥ�����= Ĥ���� if and
only if ��t�=0 we find that Eq. �13� is equivalent to

i
d

dt
���� = Ĥ���� �14�

if and only if ��t�=0. This is the usual TDSE. Therefore,
���t��= ����t�� for all times t if and only if

��t� = ����t���Ĥ��t� − Ĥ�t��2����t�� = 0 �15�

for all times t and

���tinitial�� = ����tinitial�� . �16�

In basis expansion �3� the quantity � is

��t� = �
��

Nb

a�
*H��

2 a� − �
��	

Nb

a�
*H�	H	�a� �17�

with the abbreviation

H��
2 = ����Ĥ2���� . �18�

The challenging part of the numerical evaluation of Eq. �12�
is the calculation of H��

2 which will be discussed in Sec. IV.

B. Time-independent Schrödinger equation (TISE)

Before a time-dependent calculation is done a good de-
scription of the initial state has to be found. Therefore, the
properties of the measure � are discussed also for the time-
independent case. The TISE in basis expansion is

�
�=1

Nb

H��a� = E�a�. �19�

Solutions of Eq. �19� solve the TISE

Ĥ���� = E���� �20�

if and only if

����� = 0. �21�

The first part of the proof is �20�→�21�. For this we let P̂ act

on Eq. �20� and use P̂����= ����:

P̂ĤP̂���� = E���� . �22�

With Eq. �20� we obtain

P̂ĤP̂���� = Ĥ���� . �23�

This yields Eq. �21� immediately. To show �21� → �20� we
start with �����=0 which is equivalent to Eq. �23�. Using
Eqs. �3�, �6�, and �8� we obtain

P̂ĤP̂���� = �
��

����H��a�. �24�

With Eqs. �23� and �19� this is Eq. �20� with E�=E:

Ĥ���� = �
�

����a�E� = E����� . �25�

Thus, we have shown �20�↔�21� under the condition �19�.
In real calculations the eigenstate ���� to Ĥ� is only close

to the corresponding eigenstate to Ĥ. Now we want to give
an upper limit for the deviations of ���� and E� from the
exact solutions ��0� and E0. In general, ��0� is not the ground
state. Using Eqs. �3�, �6�, and �8� the TISE in basis expansion
�19� can be written as

Ĥ����� = E����� �26�

with

Ĥ� = P̂ĤP̂ . �27�

The measure � for the error of ���� is

� = �����Ĥ� − Ĥ�2���� = �����E� − Ĥ�2���� . �28�

���� can now be written as a linear combination of the eigen-

states ��k� to Ĥ,

���� = �
k=0

�

ck��k� . �29�

The states ��k� have been sorted in such a way that

�E� − E0� 
 �E� − E1� 
 �E� − E2� 
 ¯ , �30�

where Ek is the eigenenergy of ��k� to Ĥ

Ĥ��k� = Ek��k� . �31�

The state ��0� is the eigenstate to Ĥ that is approximated
with ����. In general, ��0� is not the ground state and E0 is
not the ground-state energy. � �28� is then

� = �
k=0

�

�ck�2�E� − Ek�2. �32�

The right-hand side can be estimated as

�
k=0

�

�ck�2�E� − Ek�2 � �
k=0

�

�ck�2�E� − E0�2 = �E� − E0�2.

�33�

In Eq. �33� the inequality �30� and �k=0
� �ck�2=1 have been

used. Thus, we find

� � �E� − E0�2. �34�

Another estimate can be derived from Eq. �32�. Now, the first
term of the sum in Eq. �32� is omitted in the first step and the
Ek with k�1 are replaced by E1 in the second step:
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� = �
k=0

�

�ck�2�E� − Ek�2 � �
k=1

�

�ck�2�E� − Ek�2

� �
k=1

�

�ck�2�E� − E1�2. �35�

The overlap of ���� with the eigenstate ��0� is

P0 = ���0�����2 = �c0�2 = 1 − �
k=1

�

�ck�2. �36�

Therefore we find that

� � �1 − P0��E2, �37�

where �E=E�−E1. From this the population of the eigenstate

to Ĥ can be estimated when the eigenstate in basis expansion
has been determined,

P0 � 1 −
�

�E2 . �38�

The level distance �E is not known exactly but can usually
be approximated using the results of the basis calculation.
Equations �34� and �38� provide an estimate of the accuracy
of the basis expansion without any knowledge of the correct
solution. These equations prove that � can be used as a di-
rect measure for the quality of time-independent calcula-
tions. If the aim is to calculate lower boundaries for the
calculated energies �or expectation values� better estimates
are available �Ref. �29–42�, and references therein�.

III. THE ESTIMATE Y

Storm and Rapp �50� and Riera �51� had used the inte-
grated quantity �, i.e., 	−�

� ��t�dt, as a measure for the qual-
ity of their time-dependent calculations which is, in general,
problematic as will be shown in Sec. V B. Here we present a
new estimate of the error made in time-dependent cases. We
start with

y�t� = 1 − ����t�����t��� . �39�

This quantity is 0 for the exact solution and 1 if ��� and ����
are orthogonal. The time derivative of y can be estimated as

d

dt
y = −

d

dt
�������� 
 
 d

dt
��������
 
 
 d

dt
������
 .

�40�

By substituting the time-derivatives with the Schrödinger
equations �1� and �9� we obtain

d

dt
y 
 ����Ĥ� − Ĥ����� . �41�

We define

P̂� = �������� . �42�

In the next step, we employ the fact that

���P̂��Ĥ� − Ĥ����� = �����������Ĥ� − Ĥ�����

= ����������P̂�Ĥ� − Ĥ�P̂����

= �����������Ĥ� − P̂ĤP̂����� = 0.

�43�

In Eq. �43� the identity P̂����= ���� has been used. We sub-
stitute with Eq. �43�

����Ĥ� − Ĥ����� = �����1 − P̂���Ĥ� − Ĥ������ �44�

in Eq. �41�. Using Schwartz’s inequality we obtain

d

dt
y 
 ��1 − P̂��������Ĥ� − Ĥ������ . �45�

Using

����1 − P̂����� = 1 − ��������2 = 2y − y2 �46�

and

��Ĥ� − Ĥ������ = �� �47�

we get

d

dt
y�t� 
 �2y�t� − y�t�2���t� . �48�

For the upper bound Y �Y�t��y�t� for all times t� the differ-
ential equation

d

dt
Y�t� = �2Y�t� − Y�t�2���t� �49�

results. For a given ��t� Eq. �49� can be solved easily by
numerical propagation �65�. The final basic estimate Y�t� is
an upper limit to the accuracy of the time-dependent wave
function at time t. This can be used to prove the correctness
of a particular solution when Y�t� is small. The opposite is of
course not true, i.e., a large Y is not sufficient to conclude
bad accuracy. Note, in contrast to y�t� �39�, the estimate Y�t�
can become larger than one �Y 
2�. In addition, in contrast
to the measure ��t� �12�, the estimate Y�t� is always mono-
tonic increasing which has advantages in the analysis of the
calculated data �see Sec. V�.

Thus, Y�t� is a measure for the accuracy of a time-
dependent calculation. It can be used to judge the quality of
time-dependent calculations as well as to compare different
basis sets. This is demonstrated in Sec. V.

IV. CALCULATION OF THE MATRIX ELEMENTS

The calculation of the matrix elements is sketched for the
hydrogen atom in a laser field. The Hamiltonian of the con-
sidered system is

Ĥ = T̂ + V̂ + L̂ �50�

with T̂=−�2 /2, V̂=−1/r and the dipole interaction

L̂ = E�t�ẑ . �51�

The square of the Hamiltonian is then
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Ĥ2 = T̂2 + V̂2 + T̂V̂ + V̂T̂ + L̂2 + T̂L̂ + L̂T̂ + V̂L̂ + L̂V̂ .

�52�

To be able to calculate the matrix elements analytically
we use Gaussians as basis functions

���r�� = N�e−�r� − R� A�
�2/��

2
zl, �53�

with l�0, N� the norm constant, and R� A�
the position of the

center of the Gaussian. Matrix elements between the basis
functions with l0 were calculated iteratively from the ma-
trix elements of the s-type Gaussians �58�, i.e., those with
l=0. For the iteration of H��

2 to l0 it is convenient to
expand the Coulomb potential with Gaussian functions

V�r� = �
�

c�e−r2/��
2
. �54�

The evaluation of all matrix elements containing the Cou-
lomb potential of the nucleus is thus simplified dramatically

without an appreciable loss of accuracy. Furthermore, the V̂2

matrix elements are reduced to four-center overlaps which
can be calculated analytically for the general case of four
different centers. The expansion of the Coulomb potential is
used throughout the paper instead of the Coulomb potential
itself, i.e., also in the calculation of the Hamilton matrix �6�.

V. APPLICATION TO THE HYDROGEN ATOM

A. The ground state

As a first test, results of the calculation of the hydrogen
ground state are presented. It was shown in Sec. II B that the
quantity � of a state is only zero when the state is an eigen-
state. Furthermore, it was shown that � is a measure for the
accuracy of the calculated eigenstate in basis expansion
�60–66�.

In the following the ground state of the hydrogen atom is
determined from a basis of s-type Gaussians. The usual ap-
proach to the construction of a new basis set is to start with
an even tempered basis, i.e., the exponents form a geometric
series

�i = �1f i−1 �1 
 i 
 N� . �55�

Within this ansatz three parameters occur, N the number of
basis functions, �1 the smallest width used and f the factor
determining the spacing between the �i. It is convenient to
specify a width �max which is a lower bound for the largest
occurring � instead of N, which is then determined in such a
way that �N��max. To obtain an accurate eigenstate it is
necessary to vary all three parameters. Here, only the effect
of the variation of f is shown �Fig. 1�. The energy and the
measure � of the ground state are plotted. The error of the
ground-state energy as well as � decrease with decreasing f ,
as expected. However, the quality of the solution can be
judged with the measure � even when the energy is not
converged and the exact ground state is not known: Equa-
tions �34� and �38� allow one to estimate the overlap with the
correct ground state as well as to give a lower bound for the
energy of the ground state. To obtain a ground-state descrip-

tion which is at least 99% correct, i.e., P00.99 �see Eq.
�38��, it is sufficient to use a basis set for which the measure
� of the ground state is 1.4�10−3 a.u. This corresponds to a
factor f =2. Furthermore, the influence of the expansion of
the Coulomb potential can be seen in Fig. 1: The final dif-
ference of the ground-state energy to the real hydrogen
ground state is 7�10−6 a.u.

In the following the hydrogen basis will be built using the
parameters �1=10−5 a.u., �max=50 a.u., and f =1.5. A con-
tracted basis set that consists of atomic eigenfunctions which
in turn are represented by Gaussians is used.

B. Intense laser field

The hydrogen atom is now considered in a laser field of
the form

E�t� = E0f�t�sin��t + �� , �56�

where the shape function f�t� is given by

f�t� = �sin2 �

2T
t� for 0 � t � 2T ,

0 otherwise
� �57�

and T is the duration of the laser pulse, � the frequency, �
the phase, and E0 the amplitude.

The hydrogen atom is exposed to a 2T=4.8 fs laser pulse
with a wavelength of 253 nm and an intensity of 1.0
�1014 W/cm2. In Fig. 2, the energy E= ���−�2 /2+V���,
the part of the electronic density in states with positive en-
ergy, the measure ��t� and the estimate Y�t� �see Eq. �49��
are shown as a function of time for different basis sets.

Three basis sets have been used. The first basis consists
only of the 1s functions. 2s and 2pz have been added for the
second basis. The third and largest basis set contains all
eigenfunctions �resulting from the chosen primary basis� up
to an energy of 1 a.u. ��27.21 eV�. It is clear, that the use of

FIG. 1. Energy �top� and the measure � �bottom� as a function
of the factor f for �1=10−5 a.u. and �max=50 a.u.
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the third basis set leads to the best description of the ongoing
dynamics and the use of the first basis serves as a limiting
case.

In this first case, 1s only, the energy and PE0 are con-
stant because no excitation is possible. The measure ��t� has
a small but finite value at the beginning and at the end of the
laser pulse which represents the error of the ground state.
During the laser pulse, ��t� grows almost by a factor of 1000
because excitation is not possible. Accordingly, the estimate
Y�t� swiftly rises towards unity and the calculated approxi-
mate solution is only close to the exact solution for times
t�1 fs.

In the second case, 1s, 2s, and 2pz, the measure ��t� stays
smaller than in the first case at the beginning of the laser
pulse due to the better representation of the initial excitation.
However, for later times it is again as high as with the first
basis set because further excitation would occur and more
states are needed to describe the ongoing dynamics correctly.
Correspondingly, the rise of the estimate Y�t� is delayed in
comparison to the 1s-only basis.

In the last case, the largest basis set, the measure ��t�
stays nearly at its initial value during the first period of the
laser. Afterwards it rises but remains smaller than that of the
two smaller basis sets up to 3 fs. However, the measure ��t�
is around 3 orders of magnitude larger after the laser pulse as
compared to that of the other two cases. The reason for this
is the bad description of ionized states which cannot be rep-
resented exactly using a local basis. This also leads to a fast
increase of Y after around 2 fs. Up to that time, the calcula-
tion using this large LCAO basis set is close to the exact
solution as the overlap between the exact solution and the
calculated approximated solution is larger than 0.96 �see Eqs.
�49� and �39��.

It is obvious, that the use of the integration of ��t� over
time, i.e., 	t0

tmax��t�dt, as a measure for the quality of the
calculation �as, e.g., done in Refs. �49–51�� would lead to the
conclusion that the largest of the three basis sets produces the
least reliable results. This conclusion is simply wrong since
the largest basis set contains the basis functions used in each

of the smaller ones. Therefore, it is in general not possible to
use ��t� integrated over time as a measure for the quality of
the calculation.

On the other side, the estimate Y�t� does allow one to
compare different basis sets and judge which produces more
reliable results. As seen in Fig. 2, Y�t� is smallest for the
largest basis set at any time �in accordance with intuition and
in striking contrast to the behavior of ��t��. The advantage of
Y�t� is that this quantity can easily be used as a measure for
the quality of the results at a given time t. In contrast, it is
not possible to use the measure ��t� at a certain time t to
judge the quality of the used basis �cf. the oscillating values
of ��t� in Fig. 2�.

In Fig. 3, the calculation with the largest LCAO basis
from above is compared to that of a qualitatively different
type of basis expansion. In this expansion a small LCAO
basis �1s, 2s, and 2pz� is extended with s-type Gaussian
functions laid out chainlike along the laser polarization axis
�59�. These functions are defined by the width � of each
Gaussian, the distance d between neighboring Gaussians
with the same � and the number of Gaussians n. The param-
eters of this basis are given in Table I. These additional basis
functions are referred to as “chains” in the following. Both
basis sets have nearly the same size Nb=48 and Nb=40, re-
spectively. Their geometric properties, however, are qualita-
tively different.

The resulting total energies E are almost identical in both
calculations �see Fig. 3�. However, the total populations in
states with positive energy PE0, i.e., the ionization prob-
abilities, differ slightly for times later than 3.5 fs. In that
case, both quantities ��t� and Y�t� indicate that the chain like
basis will lead to more reliable results.

However, in contrast to the oscillating behavior of ��t� in
Fig. 3, the monotonic and nearly equal estimates Y�t� for
both basis sets at small times �t
1.5 fs� allow one to predict
equal results for both basis sets for short or weak laser
pulses, i.e., for small ionization probabilities. For longer
pulses the chainlike basis is expected to provide better re-
sults. In addition, a small value of Y�t��1 guarantees a rela-

FIG. 2. �Color online.� Energy �top left�, oc-
cupation of states with positive energy �bottom
left�, the measure ��t� �top right� and the estimate
Y�t� �bottom right� as a function of time for a
2.4 fs laser pulse with a frequency of 0.18 a.u. �
�253 nm� and an intensity of 1�1014 W/cm2.
The numbers in brackets in the legend indicate
the corresponding basis size.
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tively high accuracy of the results and, thus, allows one to
reduce drastically the basis size in actual calculations. To
demonstrate both aspects we compare the results of our cal-
culations with the high precision data of Hansen et al. �25�.
In these calculations �25� nearly 3000 basis functions were
used which is about two orders of magnitude larger as com-
pared to our sizes �48, respectively, 40 basis functions�. In
Fig. 4, the calculated populations of states with positive en-
ergy �i.e., the ionization probabilities� are plotted as func-
tions of the laser duration T for two frequencies ��=0.55
and 0.18 a.u.� and two intensities �I=3.8�1015 and
8.78�1013 W/cm2�. Evidently, as long as the laser pulses
are quite short and/or the intensity is low the agreement be-
tween our results obtained with both basis sets and those of
Hansen et al. is good. Good agreement is found also for
�=0.18 a.u. ��=253 nm� for long pulse lengths when the
chain basis is used, as expected from the discussion above.
The differences between our calculations and that of Hansen
et al. �25� for the large frequency �=0.55 a.u. at high inten-
sities are due to the fact that our relatively small basis does
not contain enough energetically high lying states.

VI. CONCLUSIONS

We have proposed a method to evaluate the error made
with a finite basis expansion in time-dependent calculations.

To this end we have defined the estimate Y �49�. The method
was applied to the hydrogen atom in intense laser fields and
it was shown that it can be used to compare different basis
sets without knowing the converged result. Furthermore, we
have shown that in general it is not possible to use � inte-
grated over time as an estimate.

The method was also used to find relatively small basis
sets suitable for the description of ionization dynamics for

TABLE I. The parameters �� of the, respectively, chain, distance
between neighboring functions of the same chain, and number of
Gaussians used in that chain� of the five chains of s-type Gaussians
laid out along the laser polarization axis are shown. All chains were
positioned to have the hydrogen atom in the center.

� �a.u.� d �a.u.� n

3.57 2.47 9

4.58 3.41 9

5.25 3.76 7

6.31 4.40 7

7.70 8.32 5

FIG. 3. �Color online.� Energy �top left�, oc-
cupation of states with positive energy �bottom
left�, the measure � �top right� and the estimate Y
�bottom right� as a function of time for a 2.4 fs
laser pulse with a frequency of 0.18 a.u.
��253 nm� and an intensity of 1�1014 W/cm2.
The numbers in parentheses in the legend indi-
cate the corresponding basis size.

FIG. 4. �Color online.� Ionization probability as a function of
laser duration T for �=0.55 a.u. �top� and �=0.18 a.u. �bottom�
and two laser intensities �8.78�1013 W/cm2 �lower curves� and
3.8�1015 W/cm2 �upper curves��. For comparison the results of
Hansen et al. �25� have been included. The basis sets of our calcu-
lations are the same as in Fig. 3.
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which in addition all matrix elements can be calculated ana-
lytically. It could be shown that the usage of so-called chains
�of Gaussians� �59� is an alternative to the usage of basis
functions of high dimension and with high angular momenta.
Yet, it is still necessary to introduce absorbing boundary con-
ditions to extend the description to arbitrarily long times.
This will be done in a subsequent work.
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